Lesson 8. Work Scheduling Models, Revisited

1 The postal workers problem, revisited

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday	7
Tuesday	8
Wednesday	7
Thursday	6
Friday	6
Saturday	4
Sunday	5

We want to determine the minimum total number of employees needed.

Our original model:

Decision variables. Let

 x_1 = number of employees who work "shift 1" – i.e. Monday to Friday x_2 = number of employees who work "shift 2" – i.e. Tuesday to Saturday :

 x_7 = number of employees who work "shift 7" – i.e. Sunday to Thursday

Objective function and constraints.

	$+ x_6 + x_7$	$_{4} + x_{5}$	$+ x_3 + x_4$	$x_1 + x_2$	min
(Mon)	$+ x_6 + x_7 \ge 7$	$_{4} + x_{5}$	$+ x_4$	x_1	s.t.
(Tue)	$+ x_6 + x_7 \ge 8$	$+ x_5$		$x_1 + x_2$	
(Wed)	$+ x_6 + x_7 \ge 7$		$+ x_3$	$x_1 + x_2$	
(Thu)	$+x_7 \ge 6$	4	$+ x_3 + x_4$	$x_1 + x_2$	
(Fri)	≥ 6	$_{4} + x_{5}$	$+ x_3 + x_4$	$x_1 + x_2$	
(Sat)	$+ x_6 \ge 4$	$_{4} + x_{5}$	$+ x_3 + x_4$	x_2	
(Sun)	$+ x_6 + x_7 \ge 5$	$_{4} + x_{5}$	$x_3 + x_4$		
	$x_6, x_7 \ge 0$	4, <i>x</i> 5,	x_3, x_4	$x_1, x_2,$	

- Left hand side of (Mon): add up the variables x_i such that shift *i* covers Monday
- We need a way to specify elements of a set that meet certain characteristics

2 Some more set notation

- What if we only want certain elements of a set?
- ":" notation

 $j \in S$: [condition] \Leftrightarrow $j \in$ elements of S such that [condition] holds

• For example:

• Define $N = \{1, 2, 3\}, S_1 = \{a, b\}, S_2 = \{b, c\}, S_3 = \{a, c\}$

• Then

```
 \circ \ j \in N : j \ge 2 \quad \Leftrightarrow 
\circ \ j \in N : a \in S_j \quad \Leftrightarrow
```

- Some people use "|" instead ":"
- Describe the constants of Example 1 using sets and parameters.

• Write a parameterized linear program for Example 1 using the sets and parameters you described above.

3 The Rusty Knot, revisited

Example 2. At the Rusty Knot, tables are set and cleared by runners working 5-hour shifts that start on the hour, from 5am to 10am. Runners in these 5-hour shifts take a mandatory break during the 3rd hour of their shifts. For example, the shift that starts at 9am ends at 2pm, with a break from 11am-12pm. The Rusty Knot pays \$7 per hour for the shifts that start at 5am, 6am, and 7am, and \$6 per hour for the shifts that start at 8am, 9am, and 10am. Past experience indicates that the following number of runners are needed at each hour of operation:

Hour	Number of runners required
5am-6am	2
6am-7am	3
7am-8am	5
8am-9am	5
9am-10am	4
10am-11am	3
11am-12pm	6
12pm-1pm	4
1pm-2pm	3
2pm-3pm	2

Formulate a linear program that determines a cost-minimizing staffing plan. You may assume that fractional solutions are acceptable.