Lesson 8. Work Scheduling Models, Revisited

1 The postal workers problem, revisited

Example 1. Postal employees in Simplexville work for 5 consecutive days, followed by 2 days off, repeated weekly. Below are the minimum number of employees needed for each day of the week:

Day	Employees needed
Monday	7
Tuesday	8
Wednesday	7
Thursday	6
Friday	6
Saturday	4
Sunday	5

We want to determine the minimum total number of employees needed.

Our original model:
Decision variables. Let

$$
\begin{gathered}
x_{1}=\text { number of employees who work "shift 1" - i.e. Monday to Friday } \\
x_{2}=\text { number of employees who work "shift } 2 \text { " - i.e. Tuesday to Saturday } \\
\vdots \\
x_{7}=\text { number of employees who work "shift 7" - i.e. Sunday to Thursday }
\end{gathered}
$$

Objective function and constraints.

$$
\begin{align*}
& \min x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \\
& \text { s.t. } x_{1}+x_{4}+x_{5}+x_{6}+x_{7} \geq 7 \tag{Mon}\\
& x_{1}+x_{2} \quad+x_{5}+x_{6}+x_{7} \geq 8 \tag{Tue}\\
& x_{1}+x_{2}+x_{3}+x_{6}+x_{7} \geq 7 \tag{Wed}\\
& x_{1}+x_{2}+x_{3}+x_{4} \quad+x_{7} \geq 6 \tag{Thu}\\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{5} \quad \geq 6 \tag{Fri}\\
& x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \geq 4 \tag{Sat}\\
& x_{3}+x_{4}+x_{5}+x_{6}+x_{7} \geq 5 \tag{Sun}\\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4}, \quad x_{5}, \quad x_{6}, \quad x_{7} \geq 0
\end{align*}
$$

- Left hand side of (Mon): add up the variables x_{i} such that shift i covers Monday
- We need a way to specify elements of a set that meet certain characteristics

2 Some more set notation

- What if we only want certain elements of a set?
- ":" notation

$$
j \in S: \text { [condition] } \Leftrightarrow j \in \text { elements of } S \text { such that [condition] holds }
$$

- For example:
- Define $N=\{1,2,3\}, S_{1}=\{a, b\}, S_{2}=\{b, c\}, S_{3}=\{a, c\}$
- Then

$$
\begin{aligned}
& \diamond j \in N: j \geq 2 \quad \Leftrightarrow \\
& \diamond j \in N: a \in S_{j} \quad \Leftrightarrow
\end{aligned}
$$

- Some people use "|" instead ":"
- Describe the constants of Example 1 using sets and parameters.
- Write a parameterized linear program for Example 1 using the sets and parameters you described above.

3 The Rusty Knot, revisited

Example 2. At the Rusty Knot, tables are set and cleared by runners working 5 -hour shifts that start on the hour, from 5 am to 10am. Runners in these 5 -hour shifts take a mandatory break during the 3rd hour of their shifts. For example, the shift that starts at 9 am ends at 2 pm , with a break from 1lam-12pm. The Rusty Knot pays $\$ 7$ per hour for the shifts that start at $5 \mathrm{am}, 6 \mathrm{am}$, and 7 am , and $\$ 6$ per hour for the shifts that start at $8 \mathrm{am}, 9 \mathrm{am}$, and 10 am . Past experience indicates that the following number of runners are needed at each hour of operation:

Hour	Number of runners required
$5 \mathrm{am}-6 \mathrm{am}$	2
$6 \mathrm{am}-7 \mathrm{am}$	3
$7 \mathrm{am}-8 \mathrm{am}$	5
$8 \mathrm{am}-9 \mathrm{am}$	5
$9 \mathrm{am}-10 \mathrm{am}$	4
$10 \mathrm{am}-11 \mathrm{am}$	3
$11 \mathrm{am}-12 \mathrm{pm}$	6
$12 \mathrm{pm}-1 \mathrm{pm}$	4
$1 \mathrm{pm}-2 \mathrm{pm}$	3
$2 \mathrm{pm}-3 \mathrm{pm}$	2

Formulate a linear program that determines a cost-minimizing staffing plan. You may assume that fractional solutions are acceptable.

